Знак математического ожидания. Математическое ожидание (Population mean) - это

Математическое ожидание

Дисперсия непрерывной случайной величины X , возможные значения которой принадлежат всей оси Ох, определяется равенством:

Назначение сервиса . Онлайн калькулятор предназначен для решения задач, в которых заданы либо плотность распределения f(x) , либо функция распределения F(x) (см. пример). Обычно в таких заданиях требуется найти математическое ожидание, среднее квадратическое отклонение, построить графики функций f(x) и F(x) .

Инструкция . Выберите вид исходных данных: плотность распределения f(x) или функция распределения F(x) .

Задана плотность распределения f(x):

Задана функция распределения F(x):

Непрерывная случайна величина задана плотностью вероятностей
(закон распределения Релея – применяется в радиотехнике). Найти M(x) , D(x) .

Случайную величину X называют непрерывной , если ее функция распределения F(X)=P(X < x) непрерывна и имеет производную.
Функция распределения непрерывной случайной величины применяется для вычисления вероятностей попадания случайной величины в заданный промежуток:
P(α < X < β)=F(β) - F(α)
причем для непрерывной случайной величины не имеет значения, включаются в этот промежуток его границы или нет:
P(α < X < β) = P(α ≤ X < β) = P(α ≤ X ≤ β)
Плотностью распределения непрерывной случайной величины называется функция
f(x)=F’(x) , производная от функции распределения.

Свойства плотности распределения

1. Плотность распределения случайной величины неотрицательна (f(x) ≥ 0) при всех значениях x.
2. Условие нормировки:

Геометрический смысл условия нормировки: площадь под кривой плотности распределения равна единице.
3. Вероятность попадания случайной величины X в промежуток от α до β может быть вычислена по формуле

Геометрически вероятность попадания непрерывной случайной величины X в промежуток (α, β) равна площади криволинейной трапеции под кривой плотности распределения, опирающейся на этот промежуток.
4. Функция распределения выражается через плотность следующим образом:

Значение плотности распределения в точке x не равно вероятности принять это значение, для непрерывной случайной величины речь может идти только о вероятности попадания в заданный интервал. Пусть {\displaystyle M[X]} или E [ X ] {\displaystyle \mathbb {E} [X]} .

M [ X ] = ∫ Ω X (ω) P (d ω) . {\displaystyle M[X]=\int \limits _{\Omega }\!X(\omega)\,\mathbb {P} (d\omega).}

Основные формулы для математического ожидания

M [ X ] = ∫ − ∞ ∞ x d F X (x) ; x ∈ R {\displaystyle M[X]=\int \limits _{-\infty }^{\infty }\!x\,dF_{X}(x);x\in \mathbb {R} } .

Математическое ожидание дискретного распределения

P (X = x i) = p i , ∑ i = 1 ∞ p i = 1 {\displaystyle \mathbb {P} (X=x_{i})=p_{i},\;\sum \limits _{i=1}^{\infty }p_{i}=1} ,

то прямо из определения интеграла Лебега следует, что

M [ X ] = ∑ i = 1 ∞ x i p i {\displaystyle M[X]=\sum \limits _{i=1}^{\infty }x_{i}\,p_{i}} .

Математическое ожидание целочисленной величины

P (X = j) = p j , j = 0 , 1 , . . . ; ∑ j = 0 ∞ p j = 1 {\displaystyle \mathbb {P} (X=j)=p_{j},\;j=0,1,...;\quad \sum \limits _{j=0}^{\infty }p_{j}=1}

то её математическое ожидание может быть выражено через производящую функцию последовательности { p i } {\displaystyle \{p_{i}\}}

P (s) = ∑ k = 0 ∞ p k s k {\displaystyle P(s)=\sum _{k=0}^{\infty }\;p_{k}s^{k}}

как значение первой производной в единице: M [ X ] = P ′ (1) {\displaystyle M[X]=P"(1)} . Если математическое ожидание X {\displaystyle X} бесконечно, то lim s → 1 P ′ (s) = ∞ {\displaystyle \lim _{s\to 1}P"(s)=\infty } и мы будем писать P ′ (1) = M [ X ] = ∞ {\displaystyle P"(1)=M[X]=\infty }

Теперь возьмём производящую функцию Q (s) {\displaystyle Q(s)} последовательности «хвостов» распределения { q k } {\displaystyle \{q_{k}\}}

q k = P (X > k) = ∑ j = k + 1 ∞ p j ; Q (s) = ∑ k = 0 ∞ q k s k . {\displaystyle q_{k}=\mathbb {P} (X>k)=\sum _{j=k+1}^{\infty }{p_{j}};\quad Q(s)=\sum _{k=0}^{\infty }\;q_{k}s^{k}.}

Эта производящая функция связана с определённой ранее функцией P (s) {\displaystyle P(s)} свойством: Q (s) = 1 − P (s) 1 − s {\displaystyle Q(s)={\frac {1-P(s)}{1-s}}} при | s | < 1 {\displaystyle |s|<1} . Из этого по теореме о среднем следует, что математическое ожидание равно просто значению этой функции в единице:

M [ X ] = P ′ (1) = Q (1) {\displaystyle M[X]=P"(1)=Q(1)}

Математическое ожидание абсолютно непрерывного распределения

M [ X ] = ∫ − ∞ ∞ x f X (x) d x {\displaystyle M[X]=\int \limits _{-\infty }^{\infty }\!xf_{X}(x)\,dx} .

Математическое ожидание случайного вектора

Пусть X = (X 1 , … , X n) ⊤ : Ω → R n {\displaystyle X=(X_{1},\dots ,X_{n})^{\top }\colon \Omega \to \mathbb {R} ^{n}} - случайный вектор. Тогда по определению

M [ X ] = (M [ X 1 ] , … , M [ X n ]) ⊤ {\displaystyle M[X]=(M,\dots ,M)^{\top }} ,

то есть математическое ожидание вектора определяется покомпонентно.

Математическое ожидание преобразования случайной величины

Пусть g: R → R {\displaystyle g\colon \mathbb {R} \to \mathbb {R} } - борелевская функция , такая что случайная величина Y = g (X) {\displaystyle Y=g(X)} имеет конечное математическое ожидание. Тогда для него справедлива формула

M [ g (X) ] = ∑ i = 1 ∞ g (x i) p i , {\displaystyle M\left=\sum \limits _{i=1}^{\infty }g(x_{i})p_{i},}

если X {\displaystyle X} имеет дискретное распределение;

M [ g (X) ] = ∫ − ∞ ∞ g (x) f X (x) d x , {\displaystyle M\left=\int \limits _{-\infty }^{\infty }\!g(x)f_{X}(x)\,dx,}

если X {\displaystyle X} имеет абсолютно непрерывное распределение.

Если распределение P X {\displaystyle \mathbb {P} ^{X}} случайной величины X {\displaystyle X} общего вида, то

M [ g (X) ] = ∫ − ∞ ∞ g (x) P X (d x) . {\displaystyle M\left=\int \limits _{-\infty }^{\infty }\!g(x)\,\mathbb {P} ^{X}(dx).}

В специальном случае, когда g (X) = X k {\displaystyle g(X)=X^{k}} , математическое ожидание M [ g (X) ] = M [ X k ] {\displaystyle M=M} называется k {\displaystyle k} -м моментом случайной величины.

Простейшие свойства математического ожидания

  • Математическое ожидание числа есть само число.
M [ a ] = a {\displaystyle M[a]=a} a ∈ R {\displaystyle a\in \mathbb {R} } - константа;
  • Математическое ожидание линейно, то есть
M [ a X + b Y ] = a M [ X ] + b M [ Y ] {\displaystyle M=aM[X]+bM[Y]} , где X , Y {\displaystyle X,Y} - случайные величины с конечным математическим ожиданием, а a , b ∈ R {\displaystyle a,b\in \mathbb {R} } - произвольные константы; 0 ⩽ M [ X ] ⩽ M [ Y ] {\displaystyle 0\leqslant M[X]\leqslant M[Y]} ; M [ X ] = M [ Y ] {\displaystyle M[X]=M[Y]} . M [ X Y ] = M [ X ] M [ Y ] {\displaystyle M=M[X]M[Y]} .

– количество мальчиков среди 10 новорождённых.

Совершенно понятно, что это количество заранее не известно, и в очередном десятке родившихся детей может оказаться:

Либо мальчиков – один и только один из перечисленных вариантов.

И, дабы соблюсти форму, немного физкультуры:

– дальность прыжка в длину (в некоторых единицах) .

Её не в состоянии предугадать даже мастер спорта:)

Тем не менее, ваши гипотезы?

2) Непрерывная случайная величина – принимает все числовые значения из некоторого конечного или бесконечного промежутка.

Примечание : в учебной литературе популярны аббревиатуры ДСВ и НСВ

Сначала разберём дискретную случайную величину, затем – непрерывную .

Закон распределения дискретной случайной величины

– этосоответствие между возможными значениями этой величины и их вероятностями. Чаще всего закон записывают таблицей:

Довольно часто встречается термин ряд распределения , но в некоторых ситуациях он звучит двусмысленно, и поэтому я буду придерживаться «закона».

А теперь очень важный момент : поскольку случайная величина обязательно примет одно из значений , то соответствующие события образуют полную группу и сумма вероятностей их наступления равна единице:

или, если записать свёрнуто:

Так, например, закон распределения вероятностей выпавших на кубике очков имеет следующий вид:

Без комментариев.

Возможно, у вас сложилось впечатление, что дискретная случайная величина может принимать только «хорошие» целые значения. Развеем иллюзию – они могут быть любыми:

Пример 1

Некоторая игра имеет следующий закон распределения выигрыша:

…наверное, вы давно мечтали о таких задачах:) Открою секрет – я тоже. В особенности после того, как завершил работу над теорией поля .

Решение : так как случайная величина может принять только одно из трёх значений, то соответствующие события образуют полную группу , а значит, сумма их вероятностей равна единице:

Разоблачаем «партизана»:

– таким образом, вероятность выигрыша условных единиц составляет 0,4.

Контроль: , в чём и требовалось убедиться.

Ответ :

Не редкость, когда закон распределения требуется составить самостоятельно. Для этого используют классическое определение вероятности , теоремы умножения / сложения вероятностей событий и другие фишки тервера :

Пример 2

В коробке находятся 50 лотерейных билетов, среди которых 12 выигрышных, причём 2 из них выигрывают по 1000 рублей, а остальные – по 100 рублей. Составить закон распределения случайной величины – размера выигрыша, если из коробки наугад извлекается один билет.

Решение : как вы заметили, значения случайной величины принято располагать в порядке их возрастания . Поэтому мы начинаем с самого маленького выигрыша, и именно рублей.

Всего таковых билетов 50 – 12 = 38, и по классическому определению :
– вероятность того, что наудачу извлечённый билет окажется безвыигрышным.

С остальными случаями всё просто. Вероятность выигрыша рублей составляет:

Проверка: – и это особенно приятный момент таких заданий!

Ответ : искомый закон распределения выигрыша:

Следующее задание для самостоятельного решения:

Пример 3

Вероятность того, что стрелок поразит мишень, равна . Составить закон распределения случайной величины – количества попаданий после 2 выстрелов.

…я знал, что вы по нему соскучились:) Вспоминаем теоремы умножения и сложения . Решение и ответ в конце урока.

Закон распределения полностью описывает случайную величину, однако на практике бывает полезно (а иногда и полезнее) знать лишь некоторые её числовые характеристики .

Математическое ожидание дискретной случайной величины

Говоря простым языком, это среднеожидаемое значение при многократном повторении испытаний. Пусть случайная величина принимает значения с вероятностями соответственно. Тогда математическое ожидание данной случайной величины равно сумме произведений всех её значений на соответствующие вероятности:

или в свёрнутом виде:

Вычислим, например, математическое ожидание случайной величины – количества выпавших на игральном кубике очков:

Теперь вспомним нашу гипотетическую игру:

Возникает вопрос: а выгодно ли вообще играть в эту игру? …у кого какие впечатления? Так ведь «навскидку» и не скажешь! Но на этот вопрос можно легко ответить, вычислив математическое ожидание, по сути – средневзвешенный по вероятностям выигрыш:

Таким образом, математическое ожидание данной игры проигрышно .

Не верь впечатлениям – верь цифрам!

Да, здесь можно выиграть 10 и даже 20-30 раз подряд, но на длинной дистанции нас ждёт неминуемое разорение. И я бы не советовал вам играть в такие игры:) Ну, может, только ради развлечения .

Из всего вышесказанного следует, что математическое ожидание – это уже НЕ СЛУЧАЙНАЯ величина.

Творческое задание для самостоятельного исследования:

Пример 4

Мистер Х играет в европейскую рулетку по следующей системе: постоянно ставит 100 рублей на «красное». Составить закон распределения случайной величины – его выигрыша. Вычислить математическое ожидание выигрыша и округлить его до копеек. Сколько в среднем проигрывает игрок с каждой поставленной сотни?

Справка : европейская рулетка содержит 18 красных, 18 чёрных и 1 зелёный сектор («зеро»). В случае выпадения «красного» игроку выплачивается удвоенная ставка, в противном случае она уходит в доход казино

Существует много других систем игры в рулетку, для которых можно составить свои таблицы вероятностей. Но это тот случай, когда нам не нужны никакие законы распределения и таблицы, ибо доподлинно установлено, что математическое ожидание игрока будет точно таким же. От системы к системе меняется лишь