Нужен ли вам беспроводной кардиодатчик для тренировок на дорожке? Рейтинг лучших нагрудных пульсометров Датчик измерения пульса.

04.02.2016

Всем любителям активного образа жизни и спорта, а также обладателям смартфонов несказанно повезло, поскольку ваши смартфоны обладают рядом скрытых способов, позволяющих решить ряд важных задач! Об одном таком способе из пойдет речь в этой заметке.

Если вы любите заниматься бегом в парке или стадионе, периодически путешествуете на велосипеде или роликах, а зимой бывает выбираетесь покататься на лыжах, то вам было бы полезно знать, что ваш, лежащий в кармане без дела смартфон мог бы сослужить вам хорошую и полезную службу. Во время таких занятий бывает интересно знать какое же расстояние вы в итоге прошли, сколько времени потратили, с какой скоростью двигались, в какой точке леса или города вы сейчас находитесь и многие другие данные. А если вы являетесь спортсменом любителем, то эта информация вам просто необходима. Большинство граждан либо не обращает внимание на возможность получения таких данных, либо покупают специальные часы-навигаторы, которые стоят не малых денег. Так вот в любом смартфоне на системе Android или Apple есть ряд спортивных приложений, которые бесплатно помогут решить все выше перечисленные задачи.

Но это еще не все — данные приложения могут также получать информацию о самочувствии вашего организма, а именно пульсе сердечной мышцы! Для спортсменов, а также любителей, которые занимаются по программе тренировок, и конечно для пожилых людей очень важно отслеживать свой пульс во время физической активности. Поддержание правильного пульса во время тренировки увеличит эффективность ваших занятий, укрепит сердце, улучшит общее самочувствие. Занятия на неправильном пульсе могут привести к повышенной утомляемости, снижению мотивации к занятиям, замедлит или остановит рост показателей и даже может привести к ряду заболеваний сердца. Поэтому если вы решили заниматься спортом на повышенных нагрузках, то пульсометр вам просто необходим!

Способы измерения пульса с помощью смартфона.

Есть два способа измерить ваш пульс в «походных» условиях. Оба способа подразумевают установку на ваш смартфон специального приложения.

Первый способ.

Установите себе на смартфон одно из приложений: Instant Heart Rate, Runtastic Heart Rate или Pulsometer. Чтобы измерить пульс вам достаточно лишь приложить палец к камере вашего смартфона и активировать программу.

Через 5-10 секунд программа установит ваш точный пульс в данный момент. Данный тип измерения пульса имеет небольшую погрешность и может использоваться в повседневной жизни. Минусы данного способа в том, что вам нужно совершить множество дополнительных действий: остановиться, достать телефон, активировать программу, приложить палец и т.д. Таким способом вы сможете измерить ваш пульс только в определенных точках вашей тренировки, и данный тип измерения вам не даст общей картины пульса во время тренировки. Поэтому для тех, кто хочет получать информацию о пульсе в течении всей тренировки есть другой способ.

Второй способ.

Данный способ не потребует от вас прерывания тренировки и позволит вам измерять ваш пульс в течении всего занятия. Для этого вам во первых необходимо установить спортивное приложение, а во вторых приобрести недорогой датчик сердечного ритма для смартфонов. Рекомендуется устанавливать сразу мощное и функциональное приложение, которое помимо пульса будет собирать всю информацию о тренировке: расстояние, скорость, темп, маршрут на карте, высоту подъема и спуска и т.д., а в качестве дополнения программа может быть использована как виртуальные тренер, который будет помогать вам развивать ваши физические возможности. Стоимость таких датчиков колеблется в диапазоне от 50$ до 150$. Для сравнения самый простой китайский наручный пульсометр стоит около 100$, и кроме пульса и времени ничего не измеряет. Если же вы приобретаете наручный пульсометр для измерения скорости и расстояния с функцией GPS (типа Garmin или Suunto), то его стоимость начинается от 300$ и доходит до 1000$. Выгода очевидна, поэтому рассмотрим данный способ подробнее.

Беспроводной датчик-пульсометр для смартфона.

Прежде чем выбрать датчик для смартфона нужно уточнить какой вид беспроводной BlueTooth связи поддерживает ваш телефон. Большинство современных смартфонов, производимых за последние 2 года имеют стандарт BlueTooth 4.0 — такой стандарт поддерживается большинством датчиков пульса. Смартфоны выпущенные до 2014 г как правило имеют стандарт связи BlueTooth 3.0 и ниже. В этом случае можно также найти беспроводной датчик-пульсометр, например модель Polar WearLink transmitter сможет работать с такими смартфонами, как Samsung Note 1, Galaxy 3 и другими.

В качестве подопытного датчика мы выбрали модель BCP-62 с современным форматом BlueTooth 4.0, произведенную голландской фирмой BBB. Она занимается производством огромного количества профессиональных аксессуаров для велоспорта. И попробуем синхронизировать датчик с телефоном Samsung Galaxy S3 mini.

В комплекте вы найдете овальный датчик и эластичный ремень. На ремне с внешней стороны есть две ответные металлические кнопки, такие же кнопки есть на датчике. Как только вы присоединяете датчик к ремню он начинает работать, если отцепили хотя бы одну кнопку — датчик выключается на неопределенный срок. Батарейка при этом не расходуется.

На синхронизацию датчика и смартфона уйдет не более 5 минут! Прежде всего нужно установить батарейку. Далее необходимо активировать датчик путем присоединения к кнопкам. После этого на телефоне активируем функцию BlueTooth. Как только ваш смартфон обнаружит датчик попытайтесь присоединится к нему. Система скорее всего запросит пароль, который как правило равен либо «0000»(четыре нуля), либо «1234». Первый этап пройден!

Чтобы начать видеть свой пульс нужно войти в специальное спортивное приложение. Мы рекомендуем использовать приложение RunKeeper, которое даже в своем бесплатном базовом исполнении позволяет получать информацию с датчика пульса. Но также вы можете использовать и другие известные приложения такие, как Runtastic или Endomondo, которые позволят использовать датчик только после небольшого денежного взноса. Если приложение установлено, то осталось только надеть датчик на себя — он надевается на голое тело, иначе индикации пульса не будет.

Датчик крепится на эластичный ремень, который может дополнительно регулироваться по длине — подгоните его по своему размеру. Ремень надевается на грудь так, чтобы он находился на уровне сердца. С внутренней стороны ремня есть два полиуретановых пятна — в них расположены устройства, фиксирующие сердечный ритм.

Включите спортивное приложение на вашем смартфоне. Приложение RunKeeper автоматически распознает и предложит использовать ваш датчик. Другие типы приложений скорее всего обяжут вам зайти в настройки и выбрать «связанные устройства». Если все сделано правильно, то ваше спортивное приложение должно «увидеть» датчик и начать регистрировать ваш пульс.

Успехов в спортивных достижениях и следите за своим пульсом!

Последние публикации


Краткий обзор 13-ти поясных сумок для бега, в котором мы укажем на важные детали и дадим рекомендации по использованию. Каждая из представленных поясных сумок отлично подходит для занятий спортом, но у каждой есть свои определенные задачи и особенности.

12.09.2018


Если вы неспешно катаетесь зимой по лыжне или даже являетесь спортсменом любителем, то весьма вероятно используете дополнительные средства для улучшения ходовых качеств ваших лыж, такие как парафины, мази держания, ускорители и эмульсии. Эти средства позволяют существенно улучшить скольжение ваших лыж, тем самым повысить вашу мотивацию, если вы любитель или улучшить скоростные характеристики и время прохождения дистанции, если вы тренируетесь на результат.

04.02.2018


Для достижения заданного норматива по беговым лыжам необходимо не только долго и упорно тренироваться, но и использовать профессиональное лыжное снаряжение и аксессуары. Прежде всего уделите внимание лыжам для конькового или классического хода, ведь от их веса, динамических характеристик и качества скользящей поверхности зависит то, как долго вы сможете поддерживать высокий темп.

02.02.2018

Занятия спортом всегда должны проходить максимально качественно и комфортно, только тогда будет достигнут высокий результат без малейшего разочарования. Очень многое зависит от спортивной экипировки. Одежда для бега обязательно обладает воздухопроницаемостью, сохраняет тепло, активно отводит влагу, поддерживает сухость, защищает от ветра, обладает ультралегкостью. Бег - это достаточно эффективный вид спорт, легкий и доступный, поэтому желающих вести здоровый образ жизни только прибавляется, соответственно, спрос на спортивную одежду лишь увеличивается. Бегать в тяжелых куртках, не способных отрегулировать и поддерживать правильный температурный режим, было бы просто невозможно, очень тяжело и жарко. Именно поэтому, сегодня существует масса различной спортивной одежды, способной преподнести спортсменам максимум удовольствия на пробежках, не стеснять движений, дарить легкость и воздушность. Особенно важно следить за своей одеждой, когда приходиться бегать на длинные дистанции. Низкокачественная одежда из синтетики обязательно спровоцирует «парниковый эффект», будет сильнее выделяться пот, начнет накапливаться влага и приводить к сильному зуду, жжению, дискомфорту во время бега. Хорошее настроение у спортсмена моментально испарится, такую тренировку точно можно считать испорченной. Причем вряд ли возникнет желание повторить подобный опыт. Подобные неприятности вызывает и хлопок, поскольку такая ткань быстро намокает и долго сохнет, соответственно, даже при сильной жаре человек может быстро простудиться. Спортсмен не получит от бега никакого удовольствия, его будет постоянно одолевать желание поскорее прекратить занятия и снять с себя ненавистную одежду. Плюс ко всему, именно тяжелые куртки приведут к усталости спортсмена, а не физические упражнения. Так что, привилегия, однозначно, на стороне курток из качественного полиэстера. Если куртка для бега соответствует следующим требованиям, значит, она выбрана максимально правильно: Обладает отличной прочностью, но при этом ее вес совершенно незначителен. Фактура приятная при прикосновении. Регулирует температурный режим в соответствии со временем года. Защищает тело пользователя от любых атмосферных осадков. В куртке на начале дистанции несколько прохладно, но в конце тренировки спортсмен ощущает только тепло, уют и повышенный комфорт. Спортивная ветровка подбирается по размеру, она должна идеально прилегать к телу, не стеснять движений, быть удобной и практически сливаться воедино со своим хозяином, быть совершенно неощутимой. Качественные модели надолго сохраняют свою форму, яркие и насыщенные оттенки, долговечны, защищены от ультрафиолетового воздействия. Отличное качество летней ветровки даст возможность наслаждаться каждым движением, парящей легкостью, невероятным комфортом на протяжении всей тренировки. Динамичные натуры всегда выберут из широкого ассортимента подходящие модели по фасону и цветовому решению. При желании можно даже поэкспериментировать с образом, почему нет? Достаточный выбор спортивных ветровок дает все шансы предполагать, что задуманное дело увенчается успехом. Несмотря на временами агрессивную внешнюю среду, спортсмен всегда будет оставаться уверенным в себе, окруженный непоколебимым комфортом. Летняя ветровка для бега Mac in a Sac Ultra - достойный выбор Дело в том, что приверженцы здорового образа жизни, профессиональные спортсмены, любители не могут пропускать тренировки, следовательно, выходят на пробежку в любое время года и при разной погоде - высокая влажность, сильный ветер, прохладно. В этом случае не обойтись без легких спортивных ветровок - отличный летний вариант, изделие «дышит», регулирует температурный баланс, удобное в эксплуатации. Яркий пример таких курток - модель Mac in a Sac Ultra. Ветровка изготовлена из высококачественных материалов, полиэстера. Обладает небольшой влагостойкостью, достаточной для защиты от моросящего дождя. Невероятно легкая - при ненадобности аккуратно складывается в мешочек, способная всегда защитить от ветра и дождя, не продувается. Спортсмены только мечтают о таком модном изделии, доступном в самых смелых и ярких расцветках. Использованный материал не способен спровоцировать возникновение аллергии. Для удобства куртка оснащена передними карманами на молнии, светоотражателями, предусмотрена вентилируемая спина, регулируемый капюшон. Вес ветровки в мешочке составляет 185 грамм. На такую одежду предложена двухлетняя гарантия, супер легкая куртка подходит мужчинам и женщинам, предназначена для эксплуатации летом, зимой и осенью.

Всем привет!

Совсем немного осталось до начала нашей краундфандинговой компании часов для измерения уровня стресса EMVIO . Появилась небольшая передышка и пальцы попросились к клавиатуре.

Немного о нашем сердце

Как известно, сердце – это автономный мышечный орган, который выполняет насосную функцию, обеспечивая непрерывный ток крови в кровеносных сосудах путем ритмичных сокращений. В сердце имеется участок, в котором генерируются импульсы, ответственные за сокращение мышечных волокон, так называемый водитель ритма (pacemaker). В нормальном состоянии, при отсутствии патологий, этот участок полностью определяет частоту сердечных сокращений. В результате образуется сердечный цикл – последовательность сокращений (систола) и расслаблений (диастола) сердечных мышц, начиная от предсердий и заканчивая желудочками. В общем случае под пульсом понимают частоту, с которой повторяется сердечный цикл. Однако есть нюансы, каким способом мы регистрируем эту частоту.

Что мы считаем пульсом

В те времена, когда медицина не имела технических средств диагностики, пульс измеряли всем известным способом – пальпацией, т.е. прикладывали палец к определенной области тела и слушали свои тактильные ощущения, и считали количество толчков стенки артерии через кожу за некоторое время - обычно 30 секунд или одну минуту. Отсюда и появилось латинское название этого эффекта - pulsus, т.е. удар, соответственно единица измерений: ударов в минуту, beatsperminute (bpm). Есть много методик пальпации, самые известные это прощупывание пульса на запястье и на шее, в области сонной артерии, который так популярен в кино.
В электрокардиографии пульс вычисляется по сигналу электрической активности сердца - электрокардиосигналу (ЭКС) путем замеров длительности интервала (в секундах) между соседними R зубцами ЭКС с последующим пересчетом в удары в минуту по простой формуле: BPM = 60/(RR-интервал) . Соответственно нужно помнить, что это желудочковый пульс, т.к. период сокращения предсердий (PP интервал) может немного отличаться.

Attention!!! Cразу хотим отметить важный момент, который вносит в путаницу в терминологию и часто встречается в комментах к статьям про гаджеты с измерением пульса. Фактически пульс, который измеряется по сокращениям стенок кровеносных сосудов, и пульс, который измеряется по электрической активности сердца, имеют разную физиологическую природу, разную форму временной кривой, различный фазовый сдвиг и соответственно требует различные методы регистрации и алгоритмы обработки. Поэтому не может быть никаких RR-интервалов при измерении пульса по модуляции объемов кровенаполнения артерий и капилляров и механических колебаний их стенок. И обратно, нельзя говорить, что если у вас нет RR-интервалов, то вы не можете измерить аналогичные по физиологической значимости интервалы по пульсовой волне.

Как гаджеты измеряют пульс?

Итак, вот наш вариант обзора самых распространённых способов измерения пульса и примеры гаждетов, которые их реализуют.

1. Измерение пульса по электрокардиосигналу

После обнаружения в конце 19 века электрической активности сердца появилась техническая возможность ее зарегистрировать.Первым, по настоящему, это сделал Виллем Эйнтховен (Willem Einthoven) в 1902 году, с помощью своего мегадевайса – струнного гальванометра (string galvanometer). Кстати он осуществил передачу ЭКГ по телефонному кабелю из больницы в лабораторию и, по сути, реализовал идею удаленного доступа к медицинским данным!


Три банки с “рассолом” и электрокардиограф весом 270 кг! Вот так рождался метод, который сегодня помогает миллионам людей во всем мире.

За свои труды в 1924 году он стал лауреатом Нобелевской премии. Именно Эйнтховен в первые получил реальную электрокардиограмму (название он придумал сам), разработал систему отведений – треугольник Эйнтховена и ввел названия сегментов ЭКС. Самым известным является комплекс QRS - момент электрического возбуждения желудочков и, как наиболее выраженный по своим временным и частотным свойствам элемент этого комплекса, зубец R.


До боли знакомый сигнал и RR-интервал!

В современной клинической практике для регистрации ЭКС используют различные системы отведений: отведения с конечностей, грудные отведения в различных конфигурациях, ортогональные отведения (по Франку) и т.п. С точки зрения измерения пульса можно использовать любые отведения, т.к. в нормальном ЭКС R зубец в том или ином виде присутствует на всех отведениях.

Спортивные нагрудные датчики пульса
При проектировании носимых гаджетов и различных спортивных тренажеров система отведений была упрощена до двух точек-электродов. Самым известным вариантом реализации такого подхода являются спортивные нагрудные мониторы в виде ремешка-кардиомонитора – HRM strap или HRM band. Думаем у читателей, ведущих спортивный образ жизни, такие устройства уже имеются.


Пример конструкции ремешка и Мистер-гаджет 80 lvl. Sensor pad – это два ЭКГ электрода с разных сторон груди.

На рынке популярностью пользуются HRM ремешки фирм Garmin и Polar, также имеется множество китайских клонов. В таких ремешках электроды выполнены в виде двух полосок из проводящего материала. Ремешок может быть частью всего устройства или пристегиваться к нему застежками-клипсами. Значения пульса, как правило, передаются по Bluetooth по протоколу ANT+ или Smart на спортивные часы или смартфон. Вполне удобно для спортивных занятий, но постоянное ношение вызывает дискомфорт.

Мы экспериментировали с такими ремешками в плане возможности оценки вариабельности пульса, считая их за эталон, но поступающие с них данные, оказались сильно сглаженными. Участник нашей команды Kvanto25 публиковал пост , как он разбирался с протоколом ремешка Polar и подключал его к компьютеру через среду Labview.

С двух рук
Следующим вариантом реализации двух электродной системы является разнесение электродов на две руки, но без постоянного подключения одной из них. В таких устройствах один электрод закрепляется на запястье в виде задней стенки часов или браслета, а другой выносится на лицевую часть устройства. Чтобы измерить пульс, нужно свободной рукой коснуться лицевого электрода и подождать несколько секунд.


Пример пульсометра с фронтальным электродом (Пульсометр Beurer)

Интересным устройством, использующим такую технологию, является браслет Phyode W/Me, разработчики которого провели успешную кампанию на Кикстартере, и их продукт имеется в продаже. На хабре про него был пост .


Электродная система PhyodeW/Me

Верхний электрод совмещен с кнопкой, поэтому многие люди, рассматривая прибор по фоткам и читая отзывы, думали, что измерение происходит просто по нажатию кнопки. Теперь вы знаете, что на подобных браслетах непрерывная регистрация со свободными руками в принципе не возможна.

Плюс этого устройства в том, что измерение пульса не является главой целью. Браслет позиционируется как средство проведения и контроля дыхательных методик, типа индивидуального тренера. Мы приобрели Phyode и проигрались с ним. Все работает, как обещано, регистрируется реальная ЭКГ, соответствующая классическому первому отведению ЭКГ. Однако прибор очень чувствителен к движениям пальца на фронтальном электроде, чуть сдвинулся и сигнал поплыл. С учетом того, что для набора статистики нужно около трех минут процесс регистрации выглядит напряжно.

Вот еще вариант использования принципа двух рук в проекте FlyShark Smartwatch, который выложен на Кикстартере .


Регистрация пульса в проекте FlyShark Smartwatch. Будьте добры подержать пальчик.

Что еще нового есть в этой области? Обязательно нужно упомянуть об интересной реализации ЭКГ электрода – емкостного датчика электрического поля EPIC Ultra High Impedance ECG Sensor производства фирмы Plessey Semiconductors.


Емкостной датчик EPIC для бесконтактной регистрации ЭКГ.

Внутри датчика установлен первичный усилитель, поэтому его можно считать активным. Датчик достаточно компактный (10х10 мм), не требует прямого электрического контакта, соответственно не имеет эффектов поляризации и их не надо смачивать. Нам кажется это решение весьма перспективным для гаджетов с регистрацией ЭКС. Готовых устройств на этих датчиках мы пока не видели.

2. Измерение пульса на основе плетизмографии

Поистине самый распространённый способ измерения пульса в клинике и быту! Сотни разнообразных устройств от прищепок до перстней. Сам метод плетизмографии основан на регистрации изменения объемов кровенаполнения органа. Результатом такой регистрации будет пульсовая волна. Клинические возможности плетизмографии выходят далеко за рамки простого определения пульса, но в данном случае нам интересен именно он.
Определение пульса на основе плетизмографии может быть реализовано двумя основными способами: импедансным и оптическим. Есть и третий вариант – механический, но мы не будем его рассматривать.
Импедансная плетизмография
Как говорит нам Медицинский словарь, импедансная плетизмография – это метод регистрации и исследования пульсовых колебаний кровенаполнения сосудов различных органов и тканей, основанный на регистрации изменений полного (омического и емкостного) электрического сопротивления переменному току высокой частоты. В России часто используется термин реография. Этот способ регистрации ведет свое начала с исследований ученого Манна (Mann, 30 –е годы) и отечественного исследователя Кедрова А.А. (40–е годы).
В настоящее время методология способа основана на двух или четырехточечной схеме измерения объемного удельного сопротивления и состоит в следующем: через исследуемый орган с помощью двух электродов пропускается сигнал с частотой от 20 до 150 кГц (в зависимости от исследуемых тканей).


Электродная система импедансной плетизмографии. Картинка отсюда

Главное условие, предъявляемое к генератору сигнала - это постоянство тока, его значение выбирают обычно не более 10-15 мкА. При прохождении сигнала через ткань его амплитуда модулируется изменением кровенаполнения. Вторая система электродов снимает модулированный сигнал, фактически имеем схему преобразователя импеданс-напряжения. При двухточечной схеме электроды генератора и приемника объединены. Далее сигнал усиливается, из него изымается несущая частота, устраняется постоянная составляющая и остается нужная нам дельта.
Если прибор откалибровать (для клиники это обязательное условие), то по оси Y можно откладывать значения в Омах. В итоге получается вот такой сигнал.



Примеры временных кривых ЭКГ, импедансной плетизмограммы (реограмме) и ее производной при синхронной регистрации. (отсюда)

Очень показательная картинка. Обратите внимание, где находится RR-интервал на ЭКС, а где расстояние между вершинами, соответствующее длительности сердечного цикла на реограмме. Также обратите внимание на резкий фронт R зубца и пологий фронт систолической фазы реограммы.

Из пульсовой кривой можно получить довольно много информации по состоянию кровообращения исследуемого органа, особенно синхронно с ЭКГ, но нам нужен только пульс. Определить его не сложно - нужно найди два локальных максимума, соответствующих максимальной амплитуде систолической волны, вычислить дельту в секундах ∆T и далее BMP = 60/∆T .

Примеров гаджетов, которые используют данный способ, мы пока не нашли. Зато есть пример концепта имплантируемого датчика для контроля кровообращения артерии. Вот про него. Активный датчик сажается прямо на артерию, с хост-девайсом общается по индуктивной связи. Мы считаем, что это очень интересное и перспективный подход. Принцип работы понятен из картинки. Спичка показана для понимания размера:) Используется 4-х точечная схема регистрации и гибкая печатная плата. Думаю, при желании, можно допилить идею для носимого микро-гаджета. Плюс этого решения в том, что потребление такого датчика исчезающее мало.


Имплантируемый сенсор кровотока и пульса. Похож на аксессуар Джонни-Мнемоника.

В завершении этого раздела сделаем ремарку. В свое время мы считали, что таким способом измеряется пульс в известном стартапе HealBeGo, поскольку в этом устройстве базовая функциональность реализуется методом импедансной спектроскопии, что, по сути, и есть реография, только с изменяемой частотой зондирующего сигнала. В общем, все уже на борту. Однако согласно описанию характеристик прибора пульс в HealBe измеряется механическим методом с помощью пьезодатчика (про этот способ во второй части обзора).

Оптическая плетизмография или фотоплетизмографияя
Оптический – это самый распространённый способ измерения пульса с точки зрения массового применения. Сужение и расширение сосуда под действием артериальной пульсации кровотока вызывают соответствующее изменение амплитуды сигнала, получаемого с выхода фотоприемника. Самые первые устройства были применены в клинике и измеряли пульс с пальца в режиме просвета или отражения. Форма пульсовой кривой повторяет реограмму.


Иллюстрация принципа работы фотоплетизмографии

Способ нашел широкое использование в клинике и вскоре технология была применена в бытовых устройствах. Например, в компактных пульсоксиметрах, регистрирующих пульс и сатурацию кислородом крови в капиллярах пальца. В мире производится сотни модификаций. Для дома, для семьи вполне пойдет, но не подходит для постоянного ношения.


Пульсоксиметр обыкновенный и клипса для уха. Тысячи их!

Существуют варианты с ушными клипсами и наушниками со встроенными датчиками. Например, такой вариант от Jabra или новый проект Glow Headphones . Функциональность аналогична HRM ремешкам, но более стильный дизайн, привычное устройство, свободный руки. Постоянно носить затычки в ушах не будешь, но для пробежек на свежем воздухе под музыку в самый раз.


Наушники Jabra Sport Pulse™ Wireless и Glow Headphones. Пульс регистрируется внутриушным (in-ear sensor) способом.

Прорыв

Самым заманчивым было измерение пульса с запястья, ведь это такое привычное и комфортное место. Первыми были часы Мио Alpha с успешной компанией на Кикстартере.

Создательница продукта Лиз Дикинсон (Liz Dickinson) пафосно провозгласила это устройство Святым Граалем измерения пульса. Модуль датчика был разработан ребятами из Philips. На сегодняшний день это самое качественное устройство для непрерывного измерения пульса с запястья методом фотоплетизмографии.


Даешь умных часов много и разных!

Сейчас можно сказать, что технология отработана и внедрена в серийное производство. Во всех подобных устройствах реализуется измерение пульса по отраженному сигналу.

Выбор длины волны излучателя

Теперь пару слов, как выбирают длину волны излучателя. Тут все зависит от решаемой задачи. Обоснование выбора хорошо иллюстрировать по графику поглощения света окси и дезоксигемоглобина с наложенными на него кривыми спектральных характеристик излучателей.


Кривая поглощения света гемоглобином и основные спектры излучения пульсовых фотоплетизмаграфических датчиков.

Выбор длины волны зависит от того, что мы хотим измерить пульс и/или сатурацию насыщения крови кислородом SO2.

Просто пульс. Для этого случая важна область, где поглощение максимально – это диапазон от 500 до 600 нм, не считая максимума в ультрафиолетовой части. Обычно выбирается значение 525 нм (зеленый цвет) или с небольшим смещением – 535 нм (применено в датчике OSRAM SFH 7050 – Photoplethysmography Sensor).


Зеленый светодиод датчика пульса – самых ходовой вариант в смарт-часах и браслетах. В датчике смартфона Samsung Galaxy S5 использован красный светодиод.

Оксиметрия. В этом режиме необходимо мерить пульс и оценивать сатурацию крови кислородом. Способ основан на разнице в поглощении связанного (окси) и не связанного с (дезоки) кислородом гемоглобина. Максимум поглощения деоксигенированного гемоглобина (Hb) находится в “красном” (660 нм) диапазоне, максимум поглощения оксигенированного (Hb02) гемоглобина в инфракасном (940 нм). Для вычисления пульса используется канал с длиной волны 660 нм.

Желтый для EMVIO. Для нашего прибора EMVIO мы выбирали из двух диапазонов: 525 nm и 590 нм (желтый цвет). При этом мы учитывали максимум спектральной чувствительности нашего оптического датчика. Эксперименты показали, что разницы между ними практически нет (в рамках нашей конструкции и выбранного датчика). Любую разницу перебивают артефакты движения, индивидуальные свойства кожи, толщина подкожного слоя запястья и степень прижатия датчика к коже. Мы захотели как-то выделиться из общего “зеленого” списка и пока остановились на желтом цвете.

Конечно, измерения можно проводить не только с запястья. Есть на рынке нестандартные варианты выбора точки регистрации пульса. Например, со лба. Такой подход использован в проекте умного шлема для велосипедистов Life beam Smart helmet разработаного Израильской компанией Lifebeam. В предложениях этой фирмы есть еще бейсболки и солнцезащитные козырьки для девушек. Если постоянно носите бейсболку, то это ваш вариант.


Велосипедист доволен, что не нужно одевать HRM ремешок.

В целом выбор точек регистрации достаточно велик: запястье, палец, мочка уха, лоб, бицпес руки, лодыжка и стопа ноги для малышей. Полное раздолье для разработчиков.

Большим плюсом оптического способа является простота реализации на современных смартфонах, где в качестве датчика используется штатная видеокамера, а в качестве излучателя – светодиод вспышки. В новом смартфоне Samsung Galaxy S5 на задней стенке корпуса, для удобства пользователя, уже имеется штатный модуль датчика пульса, возможно и другие производители будут внедрять аналогичные решения. Это может стать решающими для устройств, в которых нет непрерывной регистрации, смартфоны вберут в себя их функционал.

Новые горизонты фотоплетизмографии

Дальнейшее развитие этого способа связано с переосмыслением функционала оптического датчика и технологическими возможностями современных носимых устройств в плане обработки видеоизображений в реальном времени. В итоге имеем идею измерения пульса по видеоизображению лица. Подсветкой является естественное освещение.

Оригинальное решение, с учетом того, что видеокамера является стандартным атрибутом любого ноутбука, смартфона и даже умных часов. Идея метода раскрыта в этой работе .


Субъект N3 явно напряжен – пульс под 100 уд/мин, наверно сдает работу своему руководителю Субъекту N2. Субъект N1 просто мимо проходил.

Сначала на кадрах выделяется фрагмента лица, потом изображение раскладывается на три цветовых канала и разворачивается по временной шкале (RGB trace). Выделение пульсовой волны основано на разложение изображения методом анализа независимых компонент (ICA) и выделения частотной составляющей, связанной с модуляцией яркости пикселей под действием пульсации крови.

Лаборатория Philips Innovation реализовала аналогичный подход в виде программы Vital Signs Camera для IPhone. Весьма интересная штука. Усреднение значений конечно большое, но принципиально метод работает. Аналогичный проект развивает .


Виды экранов Vital Signs Camera.

Так что в будущем системы видеонаблюдения смогут дистанционно измерять ваш пульс. Контора АНБ возрадуется.

Окончание обзора в следующем посте “Как умные часы, спортивные трекеры и прочие гаджеты измеряют пульс? Часть 2 ”. В той части мы расскажем об более экзотических способах регистрации пульса, которые используются в современных гаджетах.

Для контроля частоты сердечных сокращений все кардиотренажеры оснащаются датчиками пульса. Штатно все беговые дорожки комплектуются проводными датчиками, которые имеют простое устройство, но высокую погрешность измерений.

Беспроводные датчики являются наиболее точными приборами измерения пульса, погрешность которых не превышает +/- 1 удар.

Пульс - это количество расширений артерии в момент выбросов крови сердцем за единицу времени. Нужно отметить, что пульс и частота сердечных сокращений (ЧСС) - это не одно и то же, хотя для физически здорового человека их значения действительно будут одинаковыми. Частота сердечных сокращений характеризуют работу нижних отделов сердца (желудочков) за единицу времени (минуту) и может значительно отличаться от частоты пульса. Такое явление можно наблюдать при нарушении ритма сердца (аритмии).

Нормы значений пульса

Каждый человек индивидуален и значения частоты сердечных сокращений могут значительно различаться для разных людей. Фактором, влияющим на ЧСС, является физическая подготовленность, степень тренированности сердца и организма в целом. Организм - это сложная система, в котором сердце решает задачу транспортировки кислорода всем тканям и органам.

Как правило, сердце тренированных спортсменов в состоянии покоя сокращается значительно реже сердца среднестатистического человека.

Нормой для здорового человека считается диапазон 60-90 ударов в минуту. При значениях пульса ниже 60 ударов в минуту наступает брадикардия, при учащенных значениях выше 90 ударов - тахикардия. Надо знать, что у новорожденного ребенка учащенное значение пульса до 140 ударов в минуту считается нормой, а пульс у женщины в сравнении с мужчиной выше на 5-10 ударов.

Значения пульса быстро растут при физических нагрузках, во время эмоциональных всплесков (гнев, страх, волнение), зависит от статистического положения тела (стоя, сидя), увеличивается после еды или после применения некоторых медикаментов.

Таблица 1 - Среднестатистические значения частоты сердечных сокращений для здорового человека.

Возраст ЧСС в минуту
Новорожденный 135-140
6 месяцев 130-135
1 год 120-125
2 года 110-115
3 года 105-110
4 года 100-105
5 лет 93-100
7 лет 90-95
8 лет 80-85
9 лет 80-85
10 лет 78-85
11 лет 78-84
12 лет 75-82
13 лет 72-80
14 лет 72-78
15 лет 70-76
16 лет 68-72

Для чего необходимо контролировать пульс на беговой дорожке?

Чтобы тренировки были максимально эффективными, необходимо следить за частотой сердечных сокращений. Зона эффективности рассчитывается, исходя из значений максимальной частоты сердечных сокращений (МЧСС). Для мужчин МЧСС = 220 – возраст, для женщин это значение составляет МЧСС = 226 – возраст.

Условно целевые зоны можно разбить на четыре диапазона:

  1. Зона общей оздоровительной нагрузки (щадящий режим): 50-60 % от МЧСС. Такая зона рекомендуется начинающим пользователям и людям, ведущим малоактивный образ жизни.
  2. Зона умеренной нагрузки (общий режим): 60-70 % от МЧСС. Подходит для большинства тренировок, которые направлены на эффективное сжигание жира.
  3. Зона повышенной нагрузки (продвинутый режим): 70-80 % от МЧСС. Рекомендуется для опытных людей с тренированным сердцем, целевая зона предназначена для укрепления сердечно-сосудистой системы.
  4. Зона анаэробной нагрузки (кратковременный экстремальный режим): 80-90 % от МЧСС. Рекомендуется для спортсменов, работающих по индивидуальным программам в присутствии тренера.

Виды кардиодатчиков для беговых дорожек

Проводные датчики измерения пульса

Первые попытки электрически измерить пульс появились в начале 20 века. В 1902 году Виллем Эйнтховен с помощью струнного гальванометра получил первый электрический кардиосигнал. Вес его измерительного прибора составлял 270 кг, а вот принцип измерения дошел до наших времен. В основе измерений ЧСС лежит система отведений (треугольник Эйнтховена), который регистрирует момент электрического возбуждения желудочков.

Гальванометр, при помощи которого в 1902 году измеряли частоту сердечных сокращений

Современные беговые дорожки оснащаются проводными датчиками измерения пульса. Принцип работы таких датчиков прост: два электрода, расположенные на поручнях, измеряют разность потенциалов, а информацию по проводам передают в аналогово-цифровой преобразователь (АЦП) консоли. Там информация обрабатывается и выдается на экран.

Недостатком такой системы является высокая погрешность измерений (20-30%), неудобство использования и скорость отображения реальных значений.

Часто получается так, что лишь через 30-40 секунд удерживания датчиков можно судить об истинных значениях ЧСС.

На поручнях консоли имеются проводные датчики измерения пульса

Беспроводные датчики измерения пульса

Беспроводные кардиодатчики имеют простое устройство и ряд преимуществ в сравнении с проводными устройствами:

  1. Максимально точные измерения ЧСС. Погрешность беспроводных датчиков +/- 1 удар в минуту
  2. Удобство использования. Кардиодатчик при помощи специального пояса закрепляется в районе сердца. При помощи двух электродов происходит регистрация разности потенциалов. Электроды рекомендуется смачивать водой для хорошего контакта. Далее по радиоканалу передается аналоговый либо цифровой сигнал, который поступает на приемник консоли и отображается на экране.
  3. Возможность использования кардиозависимых программ.

Беспроводные кардиодатчики для измерения пульса имеют более точные измерения частоты сердечных сокращений. Погрешность беспроводных датчиков +/- 1 удар в минуту

Недостатки такого метода несущественны:

  1. Необходимость использования в датчике батарейки. При каждодневных тренировках заряда хватит на 1 год.
  2. Неудобство использования кардиопояса при длительных тренировках.

Наиболее популярные беспроводные датчики измерения пульса

Для измерения пульса применяются беспроводные датчики, работающие в диапазоне частот 5 кгЦ. Датчики бывают кодированные (применяются в фитнес-залах), и некодированные (предназначенные для домашней эксплуатации).

Ведущим лидером на рынке пульсометров является компания Polar . Наряду с ней в продаже можно встретить пульсометры торговых марок Sigma, Beurer, Oregon, Garmin, Suunto. Самые бюджетные модели имеют маленький набор функций и идут в цене от 500 рублей. В среднем ценовом диапазоне от 3000 рублей можно встретить качественные и удобные пульсометры. Дорогие модели, предназначенные для интенсивного и профессионального использования, нередко имеют кодированный сигнал, продаются в районе 20000 рублей.

Многие модели беговых дорожек имеют в комплекте беспроводной кардиопояс, преимущественно фирмы Polar, работающий на частоте 5,4 кГц.

Как узнать можно ли использовать беспроводной кардиодатчик на своем тренажере?

Перед покупкой беговой дорожки стоит уточнить наличие телеметрического приемника ЧСС в данной модели. Такую техническую информацию можно получить на официальном сайте продавца, либо в инструкции по эксплуатации тренажера.

Подключение кардиодатчика

Если кардиодатчик включается впервые, то необходимо установить батарейку питания, которая также поставляется в комплекте. Далее контактируемая с телом поверхность кардиодатчика смачивается водой и кардиопояс фиксируется на груди. После включения тренажера происходит автоматическое согласование устройств.

В то время, когда медицина не имела современных технических средств диагностики, пульс измеряли, прикладывая палец к артерии, и считали количество толчков стенки артерии через кожу за определенный промежуток времени - обычно 30 секунд или одну минуту. Отсюда и пошло название этого эффекта - pulsus (лат. «удар»), измеряющийся в ударах в минуту.

Существует много методик определения пульса, но самые известные - прощупывание пульса на запястье, на шее, и в области сонной артерии.

После появления электрокардиографа (ЭКГ), пульс стали вычислять по сигналу электрической активности сердца, замеряя длительность интервала (в секундах) между соседними зубцами R на ЭКГ, а затем пересчитывая в «удары в минуту» по простой формуле: ЧСС = 60/(RR-интервал).

Электрокардиограмма может многое сказать о нашем сердце и помимо пульса, но для снятия и расшифровки ЭКГ нужны оборудование и кардиолог, которых не возьмешь с собой на пробежку. К счастью, в современном мире практически каждый может позволить себе пульсометр, который будет определять частоту пульса во время бега и в состоянии покоя.

Как работает пульсометр

Измерение пульса по электрокардиосигналу

Электрическая активность сердца была обнаружена и описана в конце 19 века, а уже в 1902 году Виллем Эйнтховен стал первым, кто ее технически зарегистрировал с помощью струнного гальванометра.


Помимо этого, Эйнтховен впервые записал электрокардиограмму (он сам дал ей такое название), разработал систему отведений и ввел названия сегментов кардиограммы. За свои труды в 1924 году он стал лауреатом Нобелевской премии.


В современной клинической практике для регистрации ЭКГ используют различные системы отведений (то есть схемы прикрепления электродов): с конечностей, грудные отведения в различных конфигурациях и т.д.

Для того чтобы измерить пульс, можно использовать любые отведения - на основании этого принципа были разработаны спортивные часы, умеющие определять ЧСС.

Ранние модели пульсометров состояли из коробочки (монитор) и проводов, крепящихся к груди. Первый беспроводной ЭКГ-монитор был изобретен в 1977 году, и стал незаменимым помощником в тренировках сборной Финляндии по лыжным гонкам. В массовую продажу первые беспроводные пульсометры поступили в 1983 году, с тех пор прочно заняв свою нишу в любительском и профессиональном спорте.


При проектировании современных спортивных гаджетов система отведений была упрощена до двух точек-электродов, а самым известным вариантом такого подхода стали спортивные нагрудные датчики в виде ремешка (HRM strap/HRM band).

Для получения стабильного и качественного сигнала необходимо смочить «электроды» на нагрудном ремне водой.

В таких ремешках электроды выполнены в виде двух полосок из проводящего материала. Ремешок может быть частью всего устройства или пристегиваться к нему застежками. Значения пульса, как правило, передаются по Bluetooth на спортивные часы или смартфон по протоколу ANT+ или Smart.


Измерение пульса с помощью оптической плетизмографии

Сейчас это самый распространённый способ измерения пульса с точки зрения массового применения, реализованный в спортивных часах, трекерах, мобильных телефонах. А первые попытки использования этой технологии предпринимались ещё в 1800-х годах.


Сужение и расширение сосуда под действием пульсации кровотока вызывают соответствующее изменение амплитуды сигнала, получаемого с выхода фотоприемника.

Способ широко используется в больницах, позже технология перешла и в бытовые устройства - компактные пульсоксиметры, регистрирующие пульс и насыщение кислородом крови в капиллярах пальца. Прекрасно подходит для периодических измерений пульса, но совершенно не подходит для постоянного ношения.

Пульсометры

Идея измерения пульса с запястья спортсмена с помощью оптической плетизмографии без дополнительного ношения нагрудных ремешков выглядела очень заманчиво. Первыми эту идею реализовали в часах Mio Alpha, которые провозгласили свое устройство прорывом и новым витком в измерении пульса. Сам модуль измерительного датчика был разработан компанией Philips.


Оптическая технология измеряет пульс с помощью светодиодов, которые оценивают кровоток на запястье. Это означает, что вы можете измерять пульс без использования нагрудного датчика. На практике это работает так: оптический сенсор на обратной стороне часов излучает свет на запястье с помощью светодиодов, и измеряет количество рассеянного кровотоком света.

Метод регистрации пульса для фотоплетизмографических датчиков

Для измерения пульса важна область с максимальным поглощением - это диапазон от 500 до 600 нм. Обычно выбирается значение 525 нм (зеленый цвет). Зеленый светодиод датчика пульса – самых ходовой вариант в смарт-часах и браслетах.

Сейчас эта технология хорошо отработана и внедрена в серийное производство. Спектр появившихся устройств с подобной технологией достаточно широк (смартфоны, браслеты-трекеры, часы), а производители спортивных устройств тоже не отстают – все наиболее значимые компании расширяют линейку пульсометров моделями с оптическими датчиками.


Ошибки при работе оптических датчиков

Считается, что оптические датчики достаточно точно определяют пульс при ходьбе и беге. Однако, при повышении частоты пульса, скажем, до 160 уд/мин, кровоток настолько быстро проходит через область датчика, что измерения становятся менее точными.

Помимо этого, на запястье, где не так много ткани, но много костей, связок и сухожилий, любое снижение кровотока (например, в холодную погоду) может исказить работу оптического датчика пульсометра.

В одном небольшом исследовании был проведен сравнительный анализ точности нагрудных и оптических датчиков пульсометров. Испытуемых разделили на две группы, в одной группе пульс измерялся с помощью нагрудного датчика, а в другой - с помощью оптического. Обе группы проходили тест на беговой дорожке, где они сначала шли, а потом бежали, в этом время регистрировалась частота пульса. В группе с нагрудным кардиодатчиком точность измерения ЧСС была 91%, тогда как в группе с оптическим датчиком она составила лишь 85%.

По мнению главы компании Mio Global, в настоящее время ни один из датчиков пульсометра не сравнится в точности с нагрудным ремнем.

Нельзя забывать и о специфических ситуациях, когда оптический датчик может не работать. Надетые поверх беговой куртки часы, наличие татуировки на запястье, неплотно прилегающие к коже часы, тренировка в спортзале - всё это может привести к погрешностям в измерении пульса с помощью оптических датчиков.

Несмотря на это, технологический прогресс в измерении ЧСС привел к появлению полезной альтернативы нагрудным ремням, и при устранении ряда недостатков оптических датчиков мы получим еще один мощный и точный инструмент наблюдения за пульсом во время занятий спортом.

Какие беговые показатели позволяет получить пульсометр

Строго говоря, продвинутая беговая динамика измеряется при наличии нагрудного ремня. Внешне обычный, внутри датчик состоит из трансмиттера и акселерометра, благодаря которому и происходит анализ движения бегуна. Те же самые акселерометры есть в телефонах, футподах, браслетах-трекерах.


К продвинутым беговым показателям относят три величины: время контакта с землей (ground contact time), вертикальные колебания (vertical oscillation) и частоту шагов, или каденс (cadence).

Время контакта с землей (ground contact time, GCT) показывает как долго ваша стопа находится на поверхности земли во время каждого шага. Измеряется в миллисекундах. Типичный бегун любитель тратит на контакт с поверхностью 160-300 миллисекунд. При повышении скорости бега значение GCT укорачивается, при замедлении – возрастает.

Существует взаимосвязь между временем контакта с землей и частотой развития травм, а также мышечным дисбалансом у бегуна. Уменьшение времени контакта с землей снижает частоту травм. Одним из наиболее действенных способов уменьшить этот показатель считается укорочение шага (повышение каденса), укрепление ягодичных мышц и включение коротких спринтов в программу тренировок.

Вертикальные колебания (vertical oscillation, VO). Посмотрите на любого профессионального бегуна - вы увидите, что верхняя половина их туловища совершает совсем незначительные движения, в то время как основную работу по перемещению бегуна выполняют ноги.

Вертикальные колебания определяют насколько ваша верхняя половина «подпрыгивает» при беге. Эти подпрыгивания измеряются в сантиметрах относительно какой-то фиксированной точки (в случае нагрудного ремня - это сенсор, встроенный в нагрудный датчик). Считается, что наиболее экономичная техника бега предполагает минимальные вертикальные колебания, а уменьшение вертикальных колебаний достигается повышением каденса.

Частота шагов или каденс (cadence). Как понятно из названия показателя, он демонстрирует количество шагов за минуту. Достаточно важный параметр, оценивающий экономичность бега. Чем быстрее вы бежите, тем выше каденс. Считается, что частота около 180 шагов в минуту является оптимальной для эффективного и экономичного бега.

Пульсовые зоны (heart rate zones). Зная максимальный пульс, различные модели беговых часов могут разбивать вашу тренировку по пульсовым зонам, показывая, сколько времени в ходе тренировки вы провели в той или иной зоне.

У разных производителей эти зоны обозначены по-своему, но их можно поделить на следующие типы:

  • восстановительная зона (60% от максимального ЧСС),
  • зона для тренировки выносливости (65%-70% от максимального ЧСС),
  • зона тренировки аэробной емкости (75-82% от максимальной ЧСС),
  • зона ПАНО (82-89% от максимального ЧСС),
  • зона максимальной аэробной нагрузки (89-94% от максимального ЧСС).

Знание своих пульсовых зон поможет вам получить максимум от каждой тренировки. О тренировках по пульсу мы подробно расскажем в следующей статье рубрики.


Помимо продвинутых беговых характеристик современные пульсометры могут измерять и отслеживать еще несколько интересных показателей:

EPOC (excess post-exercise oxygen consumption). Показатель потребления кислорода после тренировки демонстрирует, насколько изменился ваш метаболизм после пробежки. Мы все знаем, что бег приводит к сжиганию калорий, но даже после того, как тренировка закончилась, калории продолжают сгорать. Безусловно, для их восполнения нужно качественно восстановиться.

Наблюдение за показателем EPOC поможет вам понять, какие тренировки наиболее энергетически затратные, а также улучшить процесс восстановления.

Подсчитанное потребление кислорода (est. VO2). Показатель текущего потребления кислорода, рассчитанный на основании максимального потребления кислорода (VO2max ) и максимальной ЧСС.

Максимальное потребление кислорода (VO2max). Показатель отражает способность вашего организма потреблять кислород. Это важно, поскольку при повышении этого показателя ваше тело может лучше и быстрее утилизировать доставляемый к работающим мышцам кислород.

Значение максимального потребления кислорода (МПК) увеличивается при повышении тренированности. Это один из самых важных беговых показателей, напрямую связанный с экономичностью бега. Как и в случае с определением максимальной ЧСС, наилучшим способом определения МПК является тестирование в лаборатории, но ряд производителей пульсометров использует алгоритмы расчета МПК приемлемой точности. Тренировки помогают улучшить значения этого показателя.

Беговая производительность (running performance). Показатель, использующий VO2max (глобальный стандарт аэробной тренированности и выносливости) для отслеживания прогресса в тренировках.

Пиковый тренировочный эффект (peak training effect, PTE). Показывает влияние тренировочной сессии на общую выносливость и аэробную производительность. Чем вы тренированнее, тем тяжелее вы должны тренироваться для того, чтобы достичь более высоких цифр PTE.

Вместо вывода

При интенсивном использовании пульсометр может быть великолепным помощником для бегуна. Крайне неверно считать пульсометр дорогой игрушкой, который совсем необязателен для «серьезных» спортсменов. Определитесь с целями на сезон, а после начните выстраивать тренировочный план.

Помните, что измерение и контроль ЧСС во время тренировок - надежный способ улучшить результаты и избежать перетренированности.

Для тех, кто только начинает свой беговой путь, можно порекомендовать сначала наблюдать за пульсом в ходе лёгких пробежек, и уже затем переходить к какому-либо тренировочному плану. Данные, полученные с помощью пульсометра, помогут понять, как ваш организм реагирует на нагрузку.

Тем не менее, не нужно становиться заложником цифр и гаджетов. Учитесь слушать свой организм, оценивайте ощущения от каждой тренировки, ну а цифры станут важным дополнительным источником информации.

В этой статье вы узнаете о нескольких деталях, на которые нужно обращать внимание при разработке сенсоров фотоплетизмографа.

Введение

В предыдущей статье вы познакомились с конструкцией датчика измеряющего пульсограмму . Сегодня я поделюсь некоторыми наработками, которые могут быть полезны при выборе элементной базы плетизмографа и разработке его электрической схемы. Они помогут улучшить качество полезного сигнала, на которое в первую очередь влияют следующие факторы:
  • отсутствие артефактов;
  • наличие выраженной пульсовой волны в точке регистрации;
  • конструкция чувствительного элемента.
Артефакт – не относящееся к полезной составляющей изменение формы сигнала, спектрально и амплитудно схожее с ним.

Существуют несколько источников артефактов:

  • передвижения человека, использующего фотоплетизмограф, относительного источника освещения, естественного или искусственного, например, перемещение тени от солнца во время занятий спортом;
  • передвижения источника света относительно человека или изменение яркости этого источника. Например, мерцания люминесцентных ламп;
  • не связанные с пульсом движения частей тела вызывающие движения фотоплетизмографа или точек тела в том месте, где установлен чувствительный элемент. Например, движения костей предплечья, возникающие при движениях пальцами, движения костей головы, связанные с речью и мимикой.
Кроме артефактов качество измерения пульса зависит от выраженности пульсовой волны. У одного и того же человека пульс может быть проявлен очень хорошо и очень плохо. Например, я много раз наблюдал за изменением пульса во время трехчасового компьютерного психо-физиологического тестирования. Измерение пульсограммы производилось с мочки уха. При этом сигнал ухудшался с течением времени. Это могло происходить достаточно быстро – за полчаса, и связано, предположительно, с тем, что ушная клипса ухудшает кровоток, а также с вынужденной неподвижностью испытуемого.

Похожая ситуация наблюдается при измерении пульса с фаланги пальца. Изменение температуры в помещении или легкое изменение позы человека и вызванное этим смещение точки регистрации на небольшое расстояние могут привести к снижению уровня сигнала или вовсе к его исчезновению.

При измерении пульса с виска проблема отсутствия сигналов обостряется. Площадь виска больше площади пальца, труднее найти точку, в которой пульс лучше проявлен, и больше вероятность, что пользователь наденет датчик неправильно.

Многоканальные чувствительные элементы

Для решения описанной проблемы может быть применен распространенный в технике принцип – дублирование, которое в данном случае подразумевает использование датчика с несколькими чувствительными элементами. Принципиальная схема, реализующая такую идею, приведена на следующем рисунке.

Предвижу скептические мысли читателей насчет параллельно включенных светодиодов. Прошу не судить строго, так как это опытный образец, который не должен был эксплуатироваться длительное время.

Светодиоды и фототранзисторы на печатной плате располагаются попарно. Размер платы выбирается таким, чтобы перекрывать всю область виска, это позволяет располагать там же схему усиления и фильтрации сигнала. Плата может содержать отверстия для крепления к ленте-тесьме. Внешний вид датчика с девятью чувствительными элементами представлен на следующем рисунке.

Аналогичное решение может быть применено для измерения пульса с пальца или запястья. Ниже изображена схема датчика, состоящего из четырех фототранзисторов и одного светодиода.

Эмиттеры фототранзисторов могут не соединяться и тогда сигналы с каждого из них измеряются независимо, в этом случае требуется специальное многоканальное измерительное устройство. Многоканальное исполнение может быть также полезно для устранения артефактов. Если артефакт возникает только в районе одного фотоэлемента, он фиксируется и не учитывается в общей картине измерения. Однако использование такой схемы не всегда удобно, так как приводит к увеличению габаритов. Совсем другое дело, если соединить фоточувствительные элементы параллельно. В этом случае требуется только один измерительный канал. На следующем рисунке приведен прототип такого датчика. Он работает по схеме «на отражение». Светодиод располагается в центре, а фототранзисторы по краям. Датчик может использоваться для регистрации пульсограммы с фаланги пальца или запястья. Печатная плата разведена так, чтобы иметь возможность подключать фототранзисторы в многоканальный или одноканальный варианты.

Компаудирование

Для лучшей фиксации фотоэлементов поверхность печатной платы может быть залита компаундом. Для заливки изготавливается специальная форма, которую вы также видите на рисунке. Чтобы компаунд не прилипал к форме, ее лучше изготавливать из фторопласта. Если форму выполнить из другого материала, например из металла, то перед заливкой компаунда ее следует смазать специальным составом. Если такого состава нет в наличии, подойдет обычный вазелин. Следует также внимательно подходить к выбору компаунда, так как неправильно выбранный состав может деформировать элементы при отверждении.

Кроме фиксации компаунд выполняет роль светофильтра. Для этой цели подходят эпоксидные компаунды с красителями. Например может использоваться компаунд «Эпоксикон» производства СПбГТИ.

Альтернативу компаундам могут составить твердые светофильтры. Они вплотную прилегают к печатной плате, а для светодиодов и фототранзисторов выполняются пазы фрезой или лазером. На следующем рисунке изображен датчик с элементами, закрытыми отфрезерованной пластиной.

Наличие светофильтра позволяет минимизировать артефакты, создаваемые внешними источниками света. На следующем изображении представлен вид оптических компаундов до отверждения и после.

Особенности выбора фототранзисторов и светодиодов

Для регистрации пульсовой волны используются фоточувствительные элементы – фотодиоды или фототранзисторы. В этой статье речь идет только о фототранзисторах. Потому что на момент моего начала работ в этом направлении уже имелись на руках несколько десятков различных транзисторных сенсоров (клипс, прищепок и напалечников), а также были наработанные схемотехнические решения. Использование диодов при этом ничуть не хуже и повсеместно применяется в различных приложениях, например в распространённых медицинских датчиках стандарта Nellcor.

При выборе фототранзисторов и светодиодов в первую очередь следует обращать внимание на следующие характеристики:

  • длину волны (максимум спектральной характеристики) [нм];
  • угол половинной яркости для светодиодов и угол охвата для фототранзисторов [град.];
  • интенсивность излучения [мВт/ср] для светодиодов и чувствительность для фототранзисторов [мА/(мВт/см2)];
  • номинальный ток фототранзистора и светодиода [мА];
  • темновой ток фототранзистора [мА];
  • наличие встроенных в корпус линз и светофильтров.

Для измерения пульса лучше всего подходят длины волн, которые сильнее всего поглощаются кровью. Это волны соответствующие зеленому цвету 530 нм. Так же используются красный и инфракрасный диапазоны. Очень рекомендую с классификацией способов измерения пульса, там же вы узнаете про спектр поглощения гемоглобина.

При выборе фотоэлементов следует обращать внимание на наличие линз и светофильтров, которые позволяют достичь желаемого угла половинной яркости и охвата, а, значит, быть менее чувствительным к излучению от других источников. Встроенные фильтры позволяют работать только в выбранном спектральном диапазоне. Если выбрать светодиод с большим углом половинной яркости и фототранзистор с большим углом охвата, то свет будет проходить, минуя поверхность кожи. Это приведет к ухудшению измерительного диапазона и световой поток, модулируемый пульсовой волной, практически не будет влиять на выходной сигнал измерительной схемы. Эта ситуация проиллюстрирована на следующем рисунке

Угол а2 является допустимым, а угол а1 слишком велик для того чтобы использовать светодиод с таким углом в устройстве измерения пульса. Этот пример относится к случаю измерения пульса «на отражение». Выбор светодиода с большим углом половинной яркости в устройствах, работающих «на просвет» приведет к тому, что большая мощность излучения будет проходить мимо фотоприемника. Это нежелательно, особенно в мобильных устройствах.

Также следует обращать внимание на интенсивность излучения светодиода, измеряемую в милливаттах на стерадиан [мВт/ср]. В документах на светодиоды она указывается обычно при токах 20, 100 и 1000 мА. Для экономии электроэнергии лучше выбирать светодиоды, у которых эта характеристика выше при одном и том же потребляемом токе. Следует обращать внимание на величину фотоэлектрического тока фототранзистора, чем больше ее значение, тем лучше. Последние две характеристики связаны между собой. В результате, уровень минимально ожидаемого сигнала должен быть хотя бы в несколько раз выше ожидаемого уровня шумов в измерительном устройстве.

Светодиоды и фототранзисторы часто продаются парами, подходящими друг к другу конструктивно и по спектральным характеристикам. В таблице приведены характеристики нескольких пар светодиодов и фототранзисторов. Пары в строчках 2 и 3 не подходят для использования в пульсометрах из-за большого угла и низкой мощности излучения. Пары 1, 4 и 5 подходят, причем первая пара подходит лучше всего. Это было подтверждено испытаниями. При прочих равных условиях лучший сигнал пульсограммы снимался при использовании первой пары. Нужно отметить, что если между светодиодом и фототранзистором поставить непрозрачную преграду, то угол излучения и чувствительности будут не так сильно влиять на качество измерения пульса.

Заключение. Три в одном

Вместо заключения упомяну замечательное интегральное решение, которое в комментариях к предыдущей статье привел хабрапользователь valexey . Речь идет об устройстве Si1143 производства Silicon Labs. Внутри у него два фотодиода – красный и ИК, блок управления тремя светодиодами, встроенная схема усиления и фильтрации, АЦП и модуль последовательного интерфейса I2C. Не буду описывать других подробностей, так как еще не успел опробовать. Судя по описанию, это устройство хорошо подходит для различных измерений связанных с пульсометрией.

P.S.

Репозиторий пополнился чертежами чувствительных элементов и промежуточных усилителей.